Adaptive evolution and fixation of drug-resistant *Plasmodium falciparum* genotypes in pregnancy-associated malaria: 9-year results from the QuEERPAM study

Steve M. Taylor\(^{a,b,*}\), Alejandro Antonia\(^{a}\), Gaoqian Feng\(^{c,1}\), Victor Mwapasa\(^{d,e}\), Ebbie Chaluluka\(^{d}\), Malcolm Molyneux\(^{d,f}\), Feiko O. ter Kuile\(^{g,h}\), Stephen J. Rogerson\(^{c}\), Steven R. Meshnick\(^{a}\)

\(^{a}\) Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
\(^{b}\) Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, NC, USA
\(^{c}\) School of Tropical Medicine, University of Liverpool, UK
\(^{d}\) Malawi–Liverpool–Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre, Malawi
\(^{e}\) Department of Community Health, College of Medicine, Blantyre, Malawi
\(^{f}\) Department of Medicine (RMH/WH), University of Melbourne, Australia
\(^{g}\) Child and Reproductive Health Group, Liverpool School of Tropical Medicine, UK
\(^{h}\) Department of Infectious Diseases, Tropical Medicine, and AIDS, Academic Medical Center, University of Amsterdam, Netherlands

Abstract

Sulfadoxine-pyrimethamine (SP) has been widely deployed in Africa for malaria control and molecular evidence of parasite drug-resistance is prevalent. However, the temporal effects on the selection of *Plasmodium falciparum* are not well understood. We conducted a retrospective serial cross-sectional study between 1997 and 2006 to investigate changes in drug-resistant malaria among pregnant women delivering at a single hospital in Blantyre, Malawi. *P. falciparum* parasites were genotyped for parasite clone multiplicity and drug-resistance mutations, and the strength of selection upon mutant genotypes was quantified. Five mutations in the dihydrofolate reductase and dihydropteroate synthase genes began at moderate frequencies and achieved fixation by 2005; the frequency of the highly-SP-resistant “quintuple mutant” haplotype increased from 1% to 100%. The selective advantage of alleles and haplotypes was quantified with selection coefficients: Selection was positive on all mutant alleles and haplotypes associated with SP resistance, and the relative fitness of the quintuple mutant haplotype was 0.139 (95% CI 0.067–0.211), indicating a substantial positive selective advantage. Mutations that confer higher levels of resistance to SP did not emerge. SP-resistant haplotypes were rapidly selected for and fixed in *P. falciparum* populations infecting pregnant women while SP was widely deployed in Malawi. These results underscore the pressing need for new preventive measures for pregnancy-associated malaria and provide a real-world model of the selection landscape malaria parasites.

1. Introduction

Maternal malaria, maternal anemia, and low-birth weight (van Eijk et al., 2004). Although SP-resistant *Plasmodium falciparum* strains are prevalent across sub-Saharan Africa (Sridaran et al., 2010), SP has remained effective in most settings at preventing poor birth outcomes (ter Kuile et al., 2007).

Resistance to SP in *P. falciparum* is associated with the accumulation of single nucleotide polymorphisms (SNPs) in the parasite dihydrofolate reductase (dhfr) and dihydropyrotoate synthase (dhfrs) (Picot et al., 2009). These mutations are broadly distributed across sub-Saharan Africa (Sridaran et al., 2010), and parasite population genetic studies suggest that most derive not from *de novo* mutation but rather from the spread of resistant haplotypes from few origins (Roper et al., 2004; Maiga et al., 2007; Pearce et al., 2009). Few studies have explored temporal trends in these haplotypes (Raman et al., 2010; Abdel-Muhsin et al., 2004; Mockenhaupt et al., 2008; Nsanzabana et al., 2010), and none have comprehensively assessed
mutants in SP-resistance in pregnant women. In Malawi, SP was adopted in 1993 as first-line treatment for uncomplicated malaria and for IPTp; first-line therapy was changed to an artemisinin-combination therapy in 2007, but SP continues to be employed for IPTp. Multiple reports document a high prevalence of SP-resistance mutations in adults and children with malaria (Plowe et al., 1997; Kublin et al., 2002; Bwijo et al., 2003; Nkhoma et al., 2007), but no studies have explored the rate of the spread of this resistance.

Quantifying the rate of the spread of resistance can both inform understanding of the clinical durability of IPTp-SP and also assist predictive modeling of the rate of parasite evolution in response to current and future antimalarials. The QuEERPAM study (Queen Elizabeth Central Hospital Epidemiology of Resistance in Pregnancy-Associated Malaria) was a retrospective, serial cross-sectional molecular analysis of *P. falciparum* parasites infecting the peripheral blood of delivering women at a single hospital in Blantyre, Malawi. Herein, we describe temporal changes over 9 years in the frequency of drug-resistant genotypes and the multiplicity of parasite clones, and quantify the relative degree of selection on these haplotypes in the setting of intense drug pressure.

2. Materials and methods

2.1. Ethics statement

Ethics approval for this study was granted by the Research Ethics Committee of the College of Medicine, University of Malawi, and by the review boards of the Malawi Health Sciences Research Committee and the University of North Carolina at Chapel Hill.

2.2. Sample collection

Patient enrollment and sample collection have been described previously (Feng et al., 2010; Rogerson et al., 2000). Briefly, women delivering between 1997 and 2006 at Queen Elizabeth Central Hospital in Blantyre, Malawi, were invited to participate. Those who consented to participate were queried regarding demographic and clinical information, and peripheral blood was stored as red cell pellets at −40 °C or below prior to spotting onto filter paper for shipment to UNC. Thick blood smears were also prepared from peripheral blood as examined for malaria parasites (Feng et al., 2010); a random sample of approximately 25% of specimens between 1997 and 2005 which demonstrated *P. falciparum* parasites on microscopic examination were selected for genotyping.

2.3. Genotyping procedures

Three punches from each specimen were deposited in an individual well of a 96-well plastic plate. Genomic DNA (gDNA) was extracted with the invitrogen PureLink 96 kit (invitrogen, Foster City, CA) using a vacuum manifold.

The *dhfr* and *dhps* targets were amplified in separate reactions. The *dhfr* amplification included 300 nM of primer 51-F.

Table 1

<table>
<thead>
<tr>
<th>Time Period</th>
<th>No. of women</th>
<th>Age, y, mean</th>
<th>HIV pos, %</th>
<th>Primigravid, %</th>
<th>SP doses, %</th>
<th>SP doses, mean (SD)</th>
<th>Last SP dose < 60 days prior to delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>6</td>
<td>19.3</td>
<td>40</td>
<td>83.3</td>
<td>0</td>
<td>1.25 (0.5)</td>
<td>NA</td>
</tr>
<tr>
<td>1998</td>
<td>38</td>
<td>20.7</td>
<td>39.5</td>
<td>52.6</td>
<td>0</td>
<td>1 (0.92)</td>
<td>NA</td>
</tr>
<tr>
<td>1999</td>
<td>16</td>
<td>20.5</td>
<td>29.4</td>
<td>41.2</td>
<td>0</td>
<td>1 (0.73)</td>
<td>NA</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>20.9</td>
<td>24.7</td>
<td>40</td>
<td>0</td>
<td>1 (0.69)</td>
<td>NA</td>
</tr>
<tr>
<td>2001</td>
<td>20</td>
<td>21.2</td>
<td>29.3</td>
<td>44.4</td>
<td>0</td>
<td>1 (0.55)</td>
<td>NA</td>
</tr>
<tr>
<td>2002</td>
<td>11</td>
<td>22.2</td>
<td>NA</td>
<td>53.9</td>
<td>0</td>
<td>1 (0.67)</td>
<td>NA</td>
</tr>
<tr>
<td>2003</td>
<td>11</td>
<td>22.7</td>
<td>50</td>
<td>36.4</td>
<td>0</td>
<td>2 (0.94)</td>
<td>NA</td>
</tr>
<tr>
<td>2004</td>
<td>57</td>
<td>22.3</td>
<td>33.3</td>
<td>56.4</td>
<td>0</td>
<td>2.21 (0.94)</td>
<td>NA</td>
</tr>
<tr>
<td>2005</td>
<td>13</td>
<td>22.7</td>
<td>NA</td>
<td>53.4</td>
<td>0</td>
<td>2.23 (0.83)</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA, not available; SD, standard deviation; HIV, human immunodeficiency virus; SP, sulfadoxine-pyrimethamine.

* Calculated with oneway ANOVA for continuous data or the chi-squared test for categorical variables.

b Of women who received SP.
individual dhfr bined lotype) within a population. Subsequently, haplotypes for combined alleles were assigned by multiplying the frequencies of allelic markers (genotype or haplotype) by the prevalence of alleles. Because the multiplicity of parasite clones that constitute a single infection affects the estimate of genotype frequencies, we employed MalHaploFreq in order to convert the prevalences of alleles and haplotypes into frequencies (Hastings and Smith, 2008). In brief, the program incorporates a measure of the multiplicity of parasite clones and employs maximum likelihood analysis in order to estimate the frequency of molecular markers (genotype or haplotype) within a population. Subsequently, haplotypes for combined dhfr–dhps were assigned by multiplying the frequencies of individual dhfr and dhps haplotypes; though this approach may underestimate the frequency of the combined haplotype owing to linkage disequilibrium, it provides a reasonable estimate of frequency. Haplotypes for dhfr were based upon codons 51, 59, and 108 and classified as wildtype (no mutations), single mutants (single mutation), double mutants (two mutations), or triple mutants (all three mutants); those for dhps were based upon codons 437 and 540 and classified as wildtype (no mutations) or single (one mutation) or double (two mutations) mutants. Combined dhfr–dhps haplotypes followed similar convention.

Between years, MOI was compared with Kruskal–Wallis analysis of variance and haplotype frequencies with the likelihood ratio test.

To quantify the selective advantage or disadvantage of genotypes, selection coefficients were calculated to quantify the rate of change of alleles and haplotypes between subsequent generations of parasites; consistent with published analyses, we used an estimate of six parasite generations per year. Coefficients were computed by plotting the natural log of the ratio of the allele/haplotype frequency of interest to the frequency of alternate alleles/haplotypes, against parasite generations (assuming six P. falciparum generations per year) (Anderson and Roper, 2005; Nsanzabana et al., 2010). To prevent division by zero, frequencies of 100% were included as 99.99%, and 0% as 0.01%. The coefficient from a linear regression line fitted to this plot was the selection coefficient; these coefficients were generated annually and for the overall 9-year period. Annual selection coefficients were calculated using regression lines fitted to data in the year before and after the year of interest. To explore the relationship between MOI and mutation frequency, correlations between the frequency of mutant alleles and haplotypes and mean annual MOI were calculated with Spearman’s rank correlation.

2.4. Definitions and statistical analyses

Demographic and antenatal data were compared between years using one-way ANOVA, the Kruskal–Wallis rank test, or the chi-squared test. Numbers of bands among msp1 and msp2 family-specific amplifications were summed to generate a target-specific MOI.

Because the multiplicity of parasite clones that constitute a single infection affects the estimate of genotype frequencies, we employed MalHaploFreq in order to convert the prevalences of alleles and haplotypes into frequencies (Hastings and Smith, 2008). In brief, the program incorporates a measure of the multiplicity of parasite clones and employs maximum likelihood analysis in order to estimate the frequency of molecular markers (genotype or haplotype) within a population. Subsequently, haplotypes for combined dhfr–dhps were assigned by multiplying the frequencies of individual dhfr and dhps haplotypes; though this approach may underestimate the frequency of the combined haplotype owing to linkage disequilibrium, it provides a reasonable estimate of frequency. Haplotypes for dhfr were based upon codons 51, 59, and 108 and classified as wildtype (no mutations), single mutants (single mutation), double mutants (two mutations), or triple mutants (all three mutants); those for dhps were based upon codons 437 and 540, and classified as wildtype (no mutations) or single (one mutation) or double (two mutations) mutants. Combined dhfr–dhps haplotypes followed similar convention.
All statistical analyses were performed using Stata/IC (v10, Stata Corp, College Station, TX) apart from those that employed MalHa-

3. Results

3.1. Demographic and clinical data

Full data were available for 189 women from 1997 to 2005, ranging from 5 women in 1997 to 42 women in 2001 and 2004. The mean (SD) age of included women was 21.4 (4.3), and did not vary over the study period (Table 1). Primigravidae comprised 50.4% of the sample, and HIV-positive women 41.4%. SP use as IPTp changed significantly between 1997 and 2005: Beginning in 2001, no women denied receiving SP as IPTp. The timing of the last dose of SP was available from 1999 onwards, and varied significantly between years ($p = 0.002$): The proportion of women who received their last SP dose within 60 days prior to delivery increased from 55.6% to 81.8%.

3.2. Multiplicity of infection

Between years there were significant differences in mean number of msp1 ($p = 0.025$) and msp2 ($p < 0.001$) genotypes detected (Fig. 1A). From 1997 to 2005, mean (SD) MOI decreased from 2.4 (1.1) to 1.5 (0.8) for msp1 and 3.8 (1.3) to 1.8 (1.2) for msp2. The proportion of women harboring more than one msp1 clone decreased from 80% to 43% ($p = 0.116$), and that for msp2 clones decreased from 100% to 45% ($p = 0.016$) (Fig. 1B and C). There were no differences in MOI by gravidity or the receipt of SP within 60 days prior to delivery (data not shown).

3.3. Mutant genotypes

Mutations at codons 51, 59, and 108 of dhfr and codons 437 and 540 of dhps achieved 100% frequency by 2005 (Fig. 2A and B). Mutant allele frequencies in 1997 ranged from 21% to 71%, and were generally lower in dhps than dhfr. Mutations in pfmdr1 decreased over time, but the trend was not significant (Fig. 2C). There were no novel dhfr, dhps, or pfmdr1 mutations. There were no mutants at codon 164 of dhfr, and a mutation at codon 581 of dhps was detected in only 1 sample, in 2004.

Haplotype frequencies for both dhfr ($p < 0.0001$) and dhps ($p < 0.0001$) differed significantly between years. The dhfr triple mutant haplotype increased from 45.6% (95% CI. 25–68) to 100% (95% CI. 91–100), and the dhps double mutant haplotype increased from 40.5% (95% CI. 21–63) to 100% (95% CI. 90–100); the combined quintuple mutant haplotype increased from 18.5% to 100% (Fig. 3A–C). pfmdr1 haplotype frequencies did not vary significantly between years (Fig. 3D).

In stratified analyses, there were no differences in the frequency of mutations or haplotypes between primigravidae and multigravi-
dae, nor between those who received SP late in pregnancy (within 60 days prior to delivery) and who received it early. Because no women denied the receipt of SP from 2001 onwards, a comparison of genotypes between SP-exposed and unexposed was possible only for 1998–2000 (there were no non-exposed women in 1997); over these years, the frequency of dhfr haplotypes did not differ significantly in either SP-exposed women or SP-unexposed women ($p > 0.05$), though dhps haplotypes differed over these years in both groups (both $p < 0.001$).

3.4. Estimation of selection pressure on mutant genotypes

Selection coefficients were calculated to measure the relative fitness of alleles and haplotypes over time by quantifying the
proportional survival of genotypes in subsequent parasite generations. Between 1997 and 2005, selection coefficients were significant for all \(\text{dhfr} \) and \(\text{dhps} \) mutations and nonsignificant on \(\text{pfmdr1} \) alleles (Fig. 4A). Over the study period, coefficients for mutations in codons 51, 59, and 108 in \(\text{dhfr} \) were 0.151 (95% C.I. 0.029–0.273), 0.156 (95% C.I. 0.020–0.293), and 0.170 (95% C.I. 0.026–0.314); those for mutations in codons 437 and 540 in \(\text{dhps} \) were 0.154 (95% C.I. 0.071–0.237) and 0.219 (95% C.I. 0.099–0.340). Selection on \(\text{pfmdr1} \) mutations at codons 86 and 184 was close to null and statistically nonsignificant.

We repeated selection analyses upon \(\text{dhfr} \), \(\text{dhps} \), and combined \(\text{dhfr–dhps} \) haplotypes (Fig. 4B). The \(\text{dhfr} \) triple mutant haplotype (0.119; 95% C.I. 0.042–0.196), the \(\text{dhps} \) double mutant haplotype (0.146; 95% C.I. 0.081–0.211), and the combined quintuple mutant haplotype (0.139; 95% C.I. 0.067–0.211) were all under significant positive selective pressure. Most \(\text{dhfr} \) and \(\text{dhps} \) haplotypes containing wildtype alleles exhibited significant negative selective pressure as evidenced by selection coefficients less than zero. Coefficients for \(\text{pfmdr1} \) haplotypes were clustered near null and statistically nonsignificant.

Annualized selection coefficients were calculated for all mutant alleles and haplotypes to examine temporal trends in the degree of selection (Fig. 5). Nearly all coefficients were non-significant owing to small sample sizes that result from limiting the analyses to 3-year blocks. However, point estimates of selection increased in magnitude in the final 3 years of the study upon extant haplotypes: positively on the quintuple mutant, and negatively on partially-wildtype haplotypes.

To examine for differences in selection by receipt of SP, coefficients for the year 1999 were stratified by SP exposure (the only year that was flanked by years in which women did not receive SP). Selection coefficients were nonsignificant for all alleles and haplotypes, except for the \(\text{dhfr–dhps} \) quintuple mutant haplotype: in SP-unexposed women, there was negative selection that was not significant (−0.091; 95% C.I. −10–10), but in SP-exposed women, there was significant positive selection (0.246; 95% C.I. 0.23–0.26).

3.5. Correlation of MOI with mutant genotypes

Annual mutant allele frequencies were significantly negatively correlated with mean MOI at \(\text{msp2} \) for all \(\text{dhfr} \) and \(\text{dhps} \) loci and at \(\text{msp1} \) for \(\text{dhfr108} \) and \(\text{dhps540} \) (Table 2). There was no significant correlation with \(\text{pfmdr1} \) mutation frequency. Wildtype haplotypes of \(\text{dhfr} \), \(\text{dhps} \), and \(\text{dhfr–dhps} \) were significantly positively correlated with mean \(\text{msp1} \) and \(\text{msp2} \) MOI, and full-mutant haplotypes of these genes were negatively associated with mean \(\text{msp1} \) and \(\text{msp2} \) MOI.

4. Discussion

In this retrospective, serial cross-sectional study, we describe the selection and fixation of \(\text{P. falciparum} \) mutations associated with resistance to SP in parasites infecting pregnant women, and quantify the degree of selection on mutant alleles and haplotypes. While the quintuple mutant haplotype reached fixation, mutations associated with high-level SP-resistance (\(\text{dhfr}164 \) and \(\text{dhps}581 \)) were absent or rare. Additionally, we demonstrate a clear decline in the clonal multiplicity of \(\text{P. falciparum} \) infections. The high prevalence of SP-resistance mutations in Malawian \(\text{P. falciparum} \) populations has been reported previously (Nkhoma et al., 2007), and the mutation frequencies in our study reflect both the general parasite population and pressure applied by increased SP use in pregnant women. Nevertheless, the QuEERPAM study is the first investigation of antimalarial drug resistance to quantify the rate of the expansion of resistance mutations from moderate frequencies until fixation, and the first large-scale, longitudinal investigation of resistance mutations in parasites infecting pregnant women.

The selection landscape of \(\text{P. falciparum} \) has generated much interest as a means to identify and modify factors that facilitate the origin and spread of resistance in parasite populations (Mackinnon and Marsh, 2010). In this observational study, we cannot establish causality between SP exposure and the expansion of \(\text{dhfr} \) and \(\text{dhps} \) mutants alleles and haplotypes; however, their expansion, coupled with the lack of expansion of \(\text{pfmdr1} \) mutations that have not been associated with SP resistance, suggests that SP use provided a major selective pressure. Because of the heterogeneity of proposed mediators of the spread of resistance – among them malaria transmission intensity, antimalarial drug use, acquired and innate host immunity, the nature of parasite genomic correlates, and the clinical epidemiology of malaria – population-level longitudinal field studies are limited in number, and much...
knowledge of selection and spread is inferred from modeling studies in vitro (Lozovsky et al., 2009) and in silico (Antao and Hastings, 2011; Mackinnon, 2005) or from microsatellite analyses of contemporary parasites derived from cross-sectional surveys (Roper et al., 2004; Pearce et al., 2009). Pregnancy-associated malaria provides a unique model by providing a proxy for acquired immunity (gravidity), standardizing exposure to antimalarials (IPTp with SP), and allowing for an approximation of clinical drug effectiveness (placental malaria and birth outcomes). Additionally, our study benefits from consistent enrollment over many years, which limits sources of bias in allele frequencies.

In contrast to previous field studies in which resistance stabilized at moderate frequencies despite ongoing SP use (Pearce et al., 2003; Plowe et al., 2004), those in our study were driven to fixation. This may reflect the study of parasites that were subject to drug pressure at both the population and individual levels. On a population level, Malawi adopted SP as first-line malaria treatment SP in 1993, and fully-mutant dhps and dhfr haplotypes were prevalent in children in the early 2000s (Sridaran et al., 2010). On an individual level, most women had received SP as IPTp, and thus these parasitemias may represent drug-exposed, highly-resistant parasite populations. Though the receipt of SP late in pregnancy may be hypothesized to promote more within-host selection (Menendez et al., 2011; Harrington et al., 2009), there were no differences in selection on genotypes between women who received early versus late SP, and the partial malaria immunity of pregnant women may attenuate the phenomenon of in-host selection (Rogerson et al., 2010; Cravo et al., 2001). Taken together, these data suggest that the deployment of SP for malaria control can result in rapid fixation of a range of SP-resistance alleles and haplotypes.

The degree of positive selection is directly correlated with the rapidity of the spread of resistance mutations in parasite populations (Hastings, 2011), and was relatively consistent between SP-resistance genotypes, with coefficients between 15% and 22% on mutant alleles and 12–15% on mutant haplotypes. These coefficients exceed those reported in other epidemiologic settings: in a low-transmission area in South Africa, selection upon the dhfr triple mutant haplotype was estimated at 4.8% in the setting of widespread SP use (Anderson and Roper, 2005), while in a moderate-transmission area of PNG over 12 years the selection was estimated at 2.2%, though this varied with the use of SP (Nsanzabana et al., 2010). Several factors may account for this disparity. Because we investigated parasites in women who had largely already received SP as IPTp, these parasites likely represent at least partial treatment failures as opposed to only incident, antimalarial-naïve
parasitemias (see above), and potentially inflating selection coefficients. Additionally, our population was semi-immune adults, as opposed to children, in whom clone selection and susceptibility to drug may be altered (O’Meara et al., 2006). Finally, our study population had a much higher – though declining – MOI that reflects a greater intensity of \textit{P. falciparum} transmission, which is a postulated mediator of the spread of resistance (Hastings and Watkins, 2005).

Along this line, the temporal trends in MOI and mutant genotypic frequencies were significantly negatively correlated over the full course of the study. The hypothesized relationship between transmission intensity (which may be approximated by MOI) and the selection of resistance mutations is the subject of much debate (Ariey and Robert, 2003; Hastings, 2003; Hastings and Watkins, 2005; Talisuna et al., 2007). Convincing field data are scant, but some ecological analyses have suggested that the spread of resistance may be fastest at the extremes of transmission intensity, owing to counterbalancing effects – within the populations of parasites that constitute individual infections – of opportunities for parasite “out-crossing” between genetically distinct parasite clones and the effect of competition between resistant and susceptible strains (Talisuna et al., 2003; Bell et al., 2006). In our study, yearly selection coefficients – despite skewing in the final years owing to allele frequencies which approached fixation – were fairly consistent upon fully-mutant \textit{dhfr} and \textit{dhps} haplotypes despite a significant coincident fall in MOI. Though causality cannot be inferred from observational data, this consistency suggests that MOI did not substantially mediate the rate of mutant selection in our cohort.

Why did mutations at codon 164 of \textit{dhfr} and codon 581 of \textit{dhps} fail to emerge? Both mutations were detected as early as 2001 in Malawi (Alker et al., 2005; Juliano et al., 2008) and the mutations are prevalent in other African settings (Harrington et al., 2009), but despite conditions which clearly favored the fixation of other SP-resistance mutations, only 1 isolate possessed \textit{dhps}581 and none harbored the \textit{dhfr}164 mutation. Importantly, both mutations have been convincingly associated with reduced efficacy of IPTp-SP (Harrington et al., 2011). It has been hypothesized that African \textit{P. falciparum} populations lack undescribed genetic traits that compensate for a relative loss of enzyme fitness and therefore allow for the propagation of these mutations (Nzila et al., 2005); however, in vitro modeling of evolutionary trajectories of the \textit{P. falciparum} \textit{dhfr} have suggested that the \textit{dhfr}164 mutation is itself compensatory and serves to restore fitness that was compromised by other \textit{dhfr} mutations (Brown et al., 2010). Alternatively, their absence may also derive from population genetic dynamics. Notably, all mutations that were ultimately driven to fixation began the study with frequencies in excess of 20%, suggesting that their selection to fixation may be evidence of positive frequency-dependent selection upon \textit{P. falciparum} drug-resistance genotypes (Weedall and Conway, 2010). Under this scenario, the directional selection exerted by drug pressure abrogates countervailing pressure to maintain genotypic diversity within \textit{P. falciparum} populations, limiting the spread of low-level drug-resistance mutants if their fitness advantage is marginal relative to that of the prevailing drug-resistant

Table 2

Correlations between annual mean multiplicity of infection and the annual frequencies of mutant alleles and haplotypes.

<table>
<thead>
<tr>
<th>Gene, mutant codon</th>
<th>Mean msp1 MOI</th>
<th>p-Value</th>
<th>Mean msp2 MOI</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhfr 51</td>
<td>−0.60</td>
<td>0.086</td>
<td>−0.80</td>
<td>0.010</td>
</tr>
<tr>
<td>dhfr 59</td>
<td>−0.59</td>
<td>0.096</td>
<td>−0.76</td>
<td>0.016</td>
</tr>
<tr>
<td>dhfr 108</td>
<td>−0.71</td>
<td>0.034</td>
<td>−0.76</td>
<td>0.018</td>
</tr>
<tr>
<td>dhps 437</td>
<td>−0.65</td>
<td>0.058</td>
<td>−0.85</td>
<td>0.004</td>
</tr>
<tr>
<td>dhps 540</td>
<td>−0.68</td>
<td>0.045</td>
<td>−0.88</td>
<td>0.002</td>
</tr>
<tr>
<td>pfmdr1 86</td>
<td>−0.03</td>
<td>0.93</td>
<td>0.19</td>
<td>0.620</td>
</tr>
<tr>
<td>pfmdr1 184</td>
<td>0.50</td>
<td>0.171</td>
<td>0.52</td>
<td>0.154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene, mutant haplotype</th>
<th>Mean msp1 MOI</th>
<th>p-Value</th>
<th>Mean msp2 MOI</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhfr</td>
<td>0.72</td>
<td>0.028</td>
<td>0.79</td>
<td>0.011</td>
</tr>
<tr>
<td>Wildtype</td>
<td>0.73</td>
<td>0.025</td>
<td>0.84</td>
<td>0.004</td>
</tr>
<tr>
<td>Single</td>
<td>0.45</td>
<td>0.224</td>
<td>0.63</td>
<td>0.067</td>
</tr>
<tr>
<td>Double</td>
<td>−0.63</td>
<td>0.067</td>
<td>−0.82</td>
<td>0.007</td>
</tr>
<tr>
<td>dhps</td>
<td>0.68</td>
<td>0.045</td>
<td>0.82</td>
<td>0.002</td>
</tr>
<tr>
<td>Wildtype</td>
<td>−0.19</td>
<td>0.63</td>
<td>0.03</td>
<td>0.93</td>
</tr>
<tr>
<td>Single</td>
<td>−0.68</td>
<td>0.042</td>
<td>−0.90</td>
<td>0.001</td>
</tr>
<tr>
<td>Double</td>
<td>0.77</td>
<td>0.014</td>
<td>0.90</td>
<td>0.001</td>
</tr>
<tr>
<td>Wildtype</td>
<td>0.75</td>
<td>0.020</td>
<td>0.91</td>
<td><0.001</td>
</tr>
<tr>
<td>Single</td>
<td>0.65</td>
<td>0.060</td>
<td>0.82</td>
<td>0.007</td>
</tr>
<tr>
<td>Double</td>
<td>0.74</td>
<td>0.021</td>
<td>0.93</td>
<td><0.001</td>
</tr>
<tr>
<td>Quadruple</td>
<td>0.20</td>
<td>0.606</td>
<td>0.52</td>
<td>0.15</td>
</tr>
<tr>
<td>Quintuple</td>
<td>−0.72</td>
<td>0.030</td>
<td>−0.88</td>
<td>0.002</td>
</tr>
<tr>
<td>pfmdr1</td>
<td>−0.32</td>
<td>0.406</td>
<td>−0.57</td>
<td>0.112</td>
</tr>
<tr>
<td>Wildtype</td>
<td>0.42</td>
<td>0.265</td>
<td>0.52</td>
<td>0.154</td>
</tr>
<tr>
<td>Single (NF)</td>
<td>−0.03</td>
<td>0.932</td>
<td>0.193</td>
<td>0.62</td>
</tr>
<tr>
<td>Single (YY)</td>
<td>0.604</td>
<td>0.090</td>
<td>−0.09</td>
<td>0.815</td>
</tr>
</tbody>
</table>

Significance of correlations determined by Spearman’s rank correlation; significant correlations highlighted in bold. MOI, multiplicity of infection; msp1, merozoite surface protein 1; msp2, merozoite surface protein 2.
haplotypes. As an alternative, the spread of mutant genotypes may be facilitated by their acquisition of some threshold absolute frequency, at which selection pressures operate more efficiently to increase gene frequency (Mackinnon, 2005). Finally, parasite population size may mediate the selection of mutant genotypes by favoring fewer mutations with relatively larger effects on phenotype (Anderson et al., 2011). Longitudinal studies in other epidemiologic settings can help to understand these phenomena of the P. falciparum selection landscape.

This investigation has several potential limitations. The maximum-likelihood approach to estimating gene and haplotype frequency could have biased our outcomes owing to the underestimation of infection multiplicity provided by traditional msp1/msp2 genotyping (Juliano et al., 2010), but this approach did not substantially alter the point estimates, though it did narrow the confidence intervals. Additionally, the use of linear regression to estimate selection coefficients does not adequately model non-linear changes in mutation and haplotype frequencies over the entire sample (Hastings et al., 2002); nevertheless, yearly selection coefficients (Fig. 5) did not demonstrate clear patterns in temporal selection of haplotypes on a finer scale. Secondly, in some years, the number of included women was low, though we did not identify associations between frequencies and population size, our analyses incorporate measures of precision that respond to these differences, and the high MOI in these results resulted in a larger number of parasite strains being genotyped. Finally, we studied only parasites in peripheral blood at delivery, and could not analyze placental parasite populations that may differ from those in the periphery (Kamwendo et al., 2002).

In this investigation of the molecular epidemiology of pregnancy-associated malaria, we employ a serial study design and a population genetics approach to quantify the degree and tempo of selection for drug-resistance mutations. The fixation of mutations associated with resistance to SP serves as both a note of caution regarding the clinical durability of SP to prevent pregnancy-associated malaria and a real-world model of the genomic adaptive landscape of P. falciparum.

5. Funding

This work was supported by the Malaria in Pregnancy Consortium (MiP), which is funded through a grant from the Bill & Melinda Gates Foundation to the Liverpool School of Tropical Medicine (to F.O.T.K.). Sample collection was funded by a Career Development Fellowship and a Senior Overseas Biomedical Research Fellowship awarded by the Wellcome Trust (to S.J.R.) and by Grants from NIH (#AI49084), NIH-FIC (#5 D43 TW00908), and the Center for AIDS Research at the University North Carolina (to S.R.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We thank R.J. Nemeyer and Mike Mistarz (each with the University of North Carolina, Chapel Hill) for their laboratory work and Andrew Read (Pennsylvania State University) for thoughtful discussion of the project. Additionally, Alfredo Mayor (Universitat de Barcelona), Julie Gutman (Centers for Disease Control and Prevention), Brian Greenwood (London School of Hygiene and Tropical Medicine) and our anonymous reviewers provided helpful manuscript suggestions. The staff of Queen Elizabeth Central Hospital in Blantyre provided excellent care of the patients, and ultimately, we are indebted to these study participants.

References

