Lessons learnt from IPTp with Mefloquine clinical trials in Benin, Gabon, Kenya, Mozambique and Tanzania

Raquel González, MD, MPH, PhD
Barcelona Institute for Global Health (ISGlobal)
East Africa Regional meeting
12th July 2016
Background

• Increased SP resistance → evaluation of other antimalarials for IPTp needed

• **Mefloquine (MQ)** was considered a good alternative to be evaluated as IPTp

• Developed in the 1970’s by the US army

• MQ belongs to the arylaminoalcohol antimalarials
Background

• Comparative advantages of MQ for IPTp:
 – Long half life (12-17 days at prophylactic doses)
 – Can be given as single dose
 – Acceptable reprotoxicity profile in animal studies
 – Reclassified as pregnancy category B by the US-FDA
 – Recommended for chemoprophylaxis for pregnant women of all GA by the WHO and CDC
 – Well characterized in terms of PK in pregnancy
 – Resistance to MQ is rare in Africa

• Tolerability could be improved by splitting drug administration over 2 days (ter Kuile et al. 1995)
Background

• HIV-infected pregnant women are an special vulnerable group for malaria
• SP is not recommended in women receiving daily cotrimoxazole (CTX) prophylaxis
• CTX has some antimalarial effect
• Evaluation of drugs to be used as IPTp in HIV-infected women receiving CTX is needed

→ MiPPAD (Malaria in Pregnancy Preventive Alternative Drugs) study that included two randomized controlled trials (RCT)
MiPPAD Trial 1:

Safety and Efficacy of Mefloquine as Intermittent Preventive Treatment for malaria in Pregnancy: a randomized multicenter trial in HIV-negative women
Intermittent Preventive Treatment of Malaria in Pregnancy with Mefloquine in HIV-Negative Women: A Multicentre Randomized Controlled Trial

Objectives

Primary:
• To compare the safety, tolerability and efficacy of MQ to SP as IPTp for the prevention of malaria in pregnancy for the mother and her infant

Secondary:
• To compare MQ tolerability given as full dose with a split dose administered over 2 days
Study design

Randomized open-label 3 arms trial to compare 2-dose MQ versus 2-dose SP for IPTp in the prevention of the adverse effects of malaria during pregnancy and to compare MQ tolerability of 2 different MQ administration regimens. Study arms:

- IPTp with SP
- IPTp with MQ given as full dose
- IPTp with MQ given as an split dose
Pregnant women attending ANC

HIV test

HIV negative
n=4749

RCT Open-label, ITNs context
BN, GB, MZB, TZN

SP
MQ full
15mg/kg

MQ split
15 mg/kg/
in 2 days

2 IPTp doses

Delivery

HIV positive
n=1071

RCT double blinded in MZB, TZN and KN

Infants
Follow-up 1 year
Efficacy results

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>SP</th>
<th>MQ</th>
<th>RR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/N %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence of LBW</td>
<td>177/1398</td>
<td>360/2778</td>
<td>1.02</td>
<td>(0.86, 1.22)</td>
<td>0.801</td>
</tr>
<tr>
<td>Benin</td>
<td>47/349</td>
<td>110/703</td>
<td>1.16</td>
<td>(0.82, 1.64)</td>
<td>0.391</td>
</tr>
<tr>
<td>Gabon</td>
<td>54/331</td>
<td>112/652</td>
<td>1.05</td>
<td>(0.77, 1.44)</td>
<td>0.749</td>
</tr>
<tr>
<td>Mozambique</td>
<td>37/360</td>
<td>66/712</td>
<td>0.90</td>
<td>(0.60, 1.36)</td>
<td>0.621</td>
</tr>
<tr>
<td>Tanzania</td>
<td>39/358</td>
<td>72/711</td>
<td>0.93</td>
<td>(0.63, 1.36)</td>
<td>0.709</td>
</tr>
<tr>
<td>Mean birth weight, m (SD)</td>
<td>3001.5 (517.8)</td>
<td>2997.4 (535.5)</td>
<td>-4.1(^1)</td>
<td>-39.2, 31.1)</td>
<td>0.821</td>
</tr>
<tr>
<td>Maternal parasitemia at delivery (O.M.)</td>
<td>63/1372</td>
<td>88/2737</td>
<td>0.70</td>
<td>(0.51, 0.96)</td>
<td>0.026</td>
</tr>
<tr>
<td>Maternal anemia at delivery (Hb<11 g/dl)</td>
<td>609/1380</td>
<td>1110/2743</td>
<td>0.92</td>
<td>(0.85, 0.99)</td>
<td>0.026</td>
</tr>
<tr>
<td>Maternal Hb at delivery mean (SD)[n]</td>
<td>11.0 (1.6) [1380]</td>
<td>11.1 (1.5) [2743]</td>
<td>0.15(^2)</td>
<td>(0.05, 0.25)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

\(^1\)Proportional difference

July 26, 2016

Lessons learnt from IPTp with Mefloquine clinical trials in Benin, Gabon, Kenya, Mozambique and Tanzania
Efficacy results

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>SP</th>
<th>MQ</th>
<th>RR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of clinical malaria</td>
<td>96/552.8</td>
<td>130/1106.1</td>
<td>0.67</td>
<td>(0.52, 0.88)</td>
<td>0.004</td>
</tr>
<tr>
<td>Incidence of outpatients visits</td>
<td>850/558.8</td>
<td>1475/1113</td>
<td>0.86</td>
<td>(0.78, 0.95)</td>
<td>0.002</td>
</tr>
<tr>
<td>Hospital Admissions</td>
<td>106/558.8</td>
<td>186/1113.0</td>
<td>0.88</td>
<td>(0.68, 1.14)</td>
<td>0.346</td>
</tr>
</tbody>
</table>

ITT cohort

| 1 Episodes person/year

Definition of clinical malaria episode: *P. falciparum* parasitemia of any density plus any signs and/or symptoms suggestive of malaria: fever in the last 24 hours and/or axillary temperature (Tª ≥ 37.5 ºC), and/or pallor and/or arthromyalgias and/or headache and/or history of convulsions.
ITT cohort

Time to first malaria episode

Cumulative Percentage

- SP
- MQ

At risk (ca):
- SP 576
- MQ 164
- (36) 1241
- (35) 2501
- (54) (86)
- 114 242

p-value: 0.004
Adverse events related to medication

<table>
<thead>
<tr>
<th>After 1st IPTp</th>
<th>N=1559</th>
<th></th>
<th></th>
<th>N=1550</th>
<th></th>
<th></th>
<th>N=1562</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>SP</td>
<td>%</td>
<td>95%CI</td>
<td>n</td>
<td>MQ full</td>
<td>%</td>
<td>95%CI</td>
<td>n</td>
</tr>
<tr>
<td>Vomiting</td>
<td>100</td>
<td>6.41</td>
<td>(5.25; 7.75)</td>
<td>491</td>
<td>31.68</td>
<td>(29.37; 34.06)</td>
<td>471</td>
<td>30.15</td>
<td>(27.88; 32.50)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>115</td>
<td>7.38</td>
<td>(6.13; 8.79)</td>
<td>526</td>
<td>33.94</td>
<td>(31.58; 36.35)</td>
<td>554</td>
<td>35.47</td>
<td>(32.90; 37.90)</td>
</tr>
<tr>
<td>Headache</td>
<td>115</td>
<td>7.38</td>
<td>(6.13; 8.79)</td>
<td>123</td>
<td>7.94</td>
<td>(6.64; 9.39)</td>
<td>131</td>
<td>8.39</td>
<td>(7.06; 9.87)</td>
</tr>
<tr>
<td>Nausea</td>
<td>55</td>
<td>3.53</td>
<td>(2.67; 4.57)</td>
<td>136</td>
<td>8.77</td>
<td>(7.41; 10.29)</td>
<td>152</td>
<td>9.73</td>
<td>(8.31; 11.31)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>14</td>
<td>0.90</td>
<td>(0.49; 1.50)</td>
<td>107</td>
<td>6.90</td>
<td>(5.69; 8.28)</td>
<td>104</td>
<td>6.66</td>
<td>(5.47; 8.01)</td>
</tr>
</tbody>
</table>

No differences between groups on frequency of:

- Adverse pregnancy outcomes (miscarriages, stillbirths, congenital malformations, prematurity)
- SAEs
- Maternal and neonatal deaths

Safety cohort
Summary of main findings

• No differences in LBW prevalence between groups

• MQ group presented lower rates of
 – Maternal parasitemia at delivery
 – Maternal anemia at delivery
 – Incidence of clinical malaria during pregnancy
 – Incidence of outpatient clinic visits

• No differences in the frequency of adverse pregnancy outcomes (miscarriage, stillbirths, congenital malformations, maternal deaths)

• MQ group presented higher rates of drug related- Adverse Effects
 – Poorer immediate tolerability than the SP group
 – Higher frequency of vomiting and dizziness

• No differences in efficacy, frequency of adverse effects and drug tolerability between MQ full and MQ split groups
Conclusions

• MQ has a **better prophylactic** antimalarial effect than SP

• MQ is a **safe** drug in terms of adverse pregnancy outcomes

• MQ (15 mg/kg) has **worse tolerability** than SP as IPTp

• Splitting the MQ dose does not seem to confer benefits in terms of drug tolerability

• MQ at the **dose** used in this study is **not** an alternative to SP for IPTp
MiPPAD Trial 2:

Mefloquine as Intermittent Preventive Treatment for malaria in Pregnancy in HIV-infected women receiving cotrimoxazole prophylaxis: a randomized double-blind multicenter placebo-controlled trial
Intermittent Preventive Treatment of Malaria in Pregnancy with Mefloquine in HIV-Infected Women Receiving Cotrimoxazole Prophylaxis: A Multicenter Randomized Placebo-Controlled Trial

To evaluate the safety and efficacy of mefloquine (MQ) as intermittent preventive treatment for malaria in pregnancy (IPTp) in HIV-infected women taking daily CTXp and in the context of long lasting insecticide treated nets (LLITNs).
Study design

Randomized double-blind clinical trial to compare the efficacy of MQ as IPTp with placebo-IPTp in HIV-infected pregnant women receiving CTX prophylaxis.
Pregnant women attending ANC

HIV negative ← HIV test → HIV positive

Trial 2. Double blinded superiority trial, ITNs context
KN, MZB, TZN, n=1071

- Placebo + CTX
- MQ 15 mg/kg + CTX

3 IPTp doses

Delivery

Infants
Follow up 2 months
Efficacy

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Control</th>
<th></th>
<th>MQ</th>
<th></th>
<th>RR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal parasitemia at delivery (smear or PCR)</td>
<td>37/490</td>
<td>7.6</td>
<td>17/483</td>
<td>3.5</td>
<td>0.47</td>
<td>(0.27; 0.82)</td>
<td>0.008</td>
</tr>
<tr>
<td>Placental infection (Histology, smear or PCR)</td>
<td>34/462</td>
<td>7.4</td>
<td>17/449</td>
<td>3.8</td>
<td>0.52</td>
<td>(0.29; 0.90)</td>
<td>0.021</td>
</tr>
</tbody>
</table>
Efficacy

<table>
<thead>
<tr>
<th></th>
<th>Control n/PYAR</th>
<th>Mefloquine n/PYAR</th>
<th>Relative Rate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical malaria</td>
<td>16/189.1</td>
<td>8/182.2</td>
<td>0.52</td>
<td>(0.22; 1.21)</td>
<td>0.128</td>
</tr>
<tr>
<td>Outpatient visits</td>
<td>401/190.2</td>
<td>332/182.8</td>
<td>0.86</td>
<td>(0.72; 1.03)</td>
<td>0.098</td>
</tr>
<tr>
<td>All-cause hospital admissions</td>
<td>68/190.2</td>
<td>41/182.8</td>
<td>0.65</td>
<td>(0.41; 1.03)</td>
<td>0.065</td>
</tr>
<tr>
<td>Non-obstetric admissions</td>
<td>67/190.2</td>
<td>37/182.8</td>
<td>0.59</td>
<td>(0.37; 0.95)</td>
<td>0.031</td>
</tr>
</tbody>
</table>

1 Episodes person/year. ITT analysis adjusted by country.
Safety

After 1st IPTp

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo (N=531)</th>
<th>MQ (N=520)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>40</td>
<td>7.5</td>
</tr>
<tr>
<td>Vomiting</td>
<td>16</td>
<td>3.0</td>
</tr>
<tr>
<td>Headache</td>
<td>40</td>
<td>7.5</td>
</tr>
<tr>
<td>Nausea</td>
<td>21</td>
<td>4.0</td>
</tr>
</tbody>
</table>

No differences between groups on frequency of:

- Adverse pregnancy outcomes (miscarriages, stillbirths, congenital malformations, prematurity)
- SAEs
- Maternal and neonatal deaths
Mother to child transmission of HIV by treatment group (exploratory analysis)

<table>
<thead>
<tr>
<th>Infant HIV PCR results¹</th>
<th>Control</th>
<th></th>
<th>Mefloquine</th>
<th></th>
<th>Risk Ratio (95%CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT [N=855]</td>
<td>Positive</td>
<td>19</td>
<td>36</td>
<td>1.95</td>
<td>(1.12; 3.39)</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>416</td>
<td>384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP [N=754]</td>
<td>Positive</td>
<td>15</td>
<td>29</td>
<td>2.04</td>
<td>(1.08; 3.85)</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>378</td>
<td>332</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Median age 5.9 weeks (Interquartile Range 1.7). ITT analysis adjusted by country. ATP analysis adjusted by baseline variables: country, literacy, gestational age, gravidity, anemia, MUAC, CD4 counts and viral load. Interaction MQ x Country = p-value 0.642 for ITT cohort, and 0.860 for ATP cohort.
Risk factors for MTCT of HIV

<table>
<thead>
<tr>
<th></th>
<th>ITT Risk Ratio</th>
<th>95% CI</th>
<th>p-value</th>
<th>ATP Risk Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mefloquine vs Control</td>
<td>2.05</td>
<td>1.16; 3.63</td>
<td>0.014</td>
<td>2.17</td>
<td>1.12; 4.19</td>
<td>0.021</td>
</tr>
<tr>
<td>Viral load at delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(copies/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400-999 vs <400</td>
<td>4.80</td>
<td>1.38; 16.65</td>
<td>0.013</td>
<td>3.32</td>
<td>0.88; 12.50</td>
<td>0.075</td>
</tr>
<tr>
<td>1000-9999 vs <400</td>
<td>3.59</td>
<td>1.39; 9.29</td>
<td>0.008</td>
<td>3.75</td>
<td>1.43; 9.87</td>
<td>0.007</td>
</tr>
<tr>
<td>>9999 vs <400</td>
<td>5.82</td>
<td>2.01; 16.84</td>
<td>0.001</td>
<td>3.62</td>
<td>1.14; 11.51</td>
<td>0.029</td>
</tr>
<tr>
<td>No data vs <400</td>
<td>2.78</td>
<td>0.80; 9.74</td>
<td>0.109</td>
<td>1.22</td>
<td>0.16; 9.20</td>
<td>0.847</td>
</tr>
<tr>
<td>Clinical malaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>episodes in pregnancy<sup>2</sup></td>
<td>3.05</td>
<td>1.35; 6.92</td>
<td>0.008</td>
<td>4.76</td>
<td>2.01; 11.24</td>
<td><0.001</td>
</tr>
<tr>
<td>Maternal compliance to PMTCT or ART guidelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete<sup>3</sup> vs Complete<sup>4</sup></td>
<td>1.94</td>
<td>1.06; 3.57</td>
<td>0.031</td>
<td>1.96</td>
<td>0.98; 3.92</td>
<td>0.056</td>
</tr>
<tr>
<td>Nothing<sup>5</sup> vs Complete</td>
<td>2.86</td>
<td>1.43; 5.74</td>
<td>0.003</td>
<td>3.01</td>
<td>1.22; 7.37</td>
<td>0.016</td>
</tr>
</tbody>
</table>

¹Median age of infants was 5.9 weeks (IQR 1.7) at the time of the HIV PCR test. Analysis adjusted by baseline variables: country, literacy, gestational age, gravidity, anemia, MUAC, CD4 counts and viral load. PMTCT: Prevention of Mother to Child Transmission. ART: Antiretroviral therapy. ²At least one episode of clinical malaria during study follow-up in pregnancy. ³Incomplete: received partially PMTCT (either antenatal, intrapartum or postpartum) or ART. ⁴Complete: received PMTCT (antenatal, intrapartum, and postpartum) or ART according to national guidelines. ⁵The mother did not receive either PMTCT or ART.
Summary of main findings

• In IPTp-MQ group, **reduced** rate of:
 – Maternal **parasitemia** at delivery
 – Placental infection
 – Hospital admissions

• **No differences** on frequency of adverse pregnancy outcome

• No maternal SAEs related to medication

• In IPTp-MQ group, **higher**:
 – Frequency of **vomiting and dizziness**
 – HIV **viral loads** at delivery
 – Rates of **MTCT of HIV**
Conclusions

• The **addition** of an **effective antimalarial** drug to daily **CTX** prophylaxis in **HIV-infected women** can have a beneficial effect by:
 – Halving the risk of maternal **parasitemia** at delivery
 – Reducing the incidence of hospital **admissions**

• Poor tolerability of MQ (15mg/kg) → search for alternative antimalarials

• The increased MTCT of HIV calls for the need of **specifically designed studies** to fully understand the effects of antimalarials and ARVs co-administration

• There is an **urgent** need to address the **prevention** of malaria in **HIV-infected pregnant women** who are one of the most **vulnerable** group to the infection in malaria endemic areas in **Africa**
MiPPAD investigators

ISGlobal, Barcelona, Spain
• John J. Aponte
• Raquel González
• Alfredo Mayor
• Clara Menéndez

IRD, Paris, France
• Valérie Briand
• Michel Cot

MRU, Lambaréné, Gabon
• Jean Rodolphe Mackanga
• Ghyslain Mombo-Ngoma
• Rella M Zoleko

CDC, Atlanta, USA
• Meghna Desai
• Laurence Slutsker
• John Williamson

KEMRI, Kisumu, Kenya
• Peter Ouma
• Kephas Otieno
• Abraham Katana

UoTübingen, Tübingen, Germany
• Peter G. Kremsner
• Michael Ramharter

FSS, Cotonou, Benin
• Manfred Accrombessi
• Achille Massougbodji
• Smaïla Ouédragou

CISM, Manhiça, Mozambique
• Eusébio V. Macete
• Arsénio Nhacolo
• María Rupérez
• Esperança Sevene
• Anifa Valá

IHI, Dodoma, Tanzania
• Salim Abdulla
• Mwaka A. Kakolwa
• Abdunoor M. Kabanywanyi
Acknowledgements

All study participants, nurses and field workers.

DSMB
- Xavier Carné
- Ogobara Doumbo
- Safiatou Niare
- Harald Noedl
- Jean-Yves Mary

Trial management team, ISGlobal
- Golbahar Pahlavan
- Daniel Iñíguez
- Montserrat Pi

Safety Monitoring Team
- Anna Llupià
- Laia Sánchez
- Alberto L. García-Basteiro
- Sergi Sanz

Hospital Clínic de Barcelona
- Elena del Cacho
- Carles Codina
- Jaume Ordi
- Mercè Bosch
Thank you!

MiPPAD Fifth Investigator’s meeting, Barcelona, November 2014